

■現在,国内外で検討されているEV,HV,PHVの駆動, 発電用モータからのレアアースのリサイクルは、

モータを、ネオジム磁石と鋼板から構成される ロータと、鋼板と銅線からなるステータに解体 ロータを消磁し、さらに分解して磁石と鋼板を分け、 磁石単体を回収 湿式法や乾式法を用いてネオジム磁石から レアアースを分離・回収

※複雑なプロセスとなっている.

出典:(一社)産業環境管理協会資源・リサイクル促進センター http://www.cjc.or.jp/raremetal/advanced-business-model/toyotatoyotametal-toyotsurecycle

Table2 初期試料 (g)								
Nd_2O_3	3.70							
$BaB_4O_7^*$	1.36							
銑鉄	5.00							
Cu	5.00							

(BaB4O7純度:95.5%)

slag

Cu-rich

確認されたが、より低温の1400°Cのスラグでは固相が確認 できていないことから,冷却過程で析出したものと考える.

✓Nd₂O₃-BaB₄O₇-Fe-Cu-C系において, 1400°C, 1500°Cの温度域では, Fe-C相には5 mass%程度のCuが, Cu相には4~5 mass%程度 のFeが相互溶解するが、Nd₂O₃-BaB₄O₇系スラグ相とFe-C相、Cu相が共存していても、スラグ相にFeとCuはほとんど分配され ず、レアアースを含んだスラグ相と、鉄に富んだ溶Fe相と、銅に富んだ溶Cu相の三相に分離可能であることが分かった.

OICP-OES <u>Ndはスラグ相へ</u> <u>FeとCuは金属相へ</u>													
	Table3 スラグ相の分析結果												
	に回す(のつ)	mass%											
			\mathbf{Nd}_2	O ₃	BaO		B_2O_3		FeO		Cu_2O		
	1400		74.17		14	.13	11.63		N.D.		0.06		
	1500		74.91		14	.21	10.82		N.D.		0.06		
	Table4 Fe-C相の分析結果												
	、回床(つつ)			mass%									
			Nd E		Nd Ba B		Fe			Cu	C		
	1400	ľ	J.D.	N.D.		0.0)8	8 90.1		5.45	Bal.		
	1500	N	J.D.). N.D.		0.2	23 90.4		49	4.61	Bal.		
	Table5 Cu相の分析結果												
	記匠(のの)	mass%											
			Nd		Ba		B		Fe		Cu		
	1400	1400 0.01 N.D. 0.01		0.01		01	5.41		94.57				
	1500			0.03		D.	0.	02	(5.29	93.67		
	検出下限值 :0.01mass%												
	分析結果より、	Fe	e相と	Cu	相	中の	Nd	濃度	はの	.03mas	s%以下		

あり、レアアースはスラグ相中に濃縮されることが確認で きた.また、スラグ相中のFeとCuの酸化物の濃度も極めて 低く,FeとCuはスラグ相に損失されないことが確認できた.

